A Fast Neural{Network Algorithm for Cell Placement

نویسنده

  • C. AYKANAT
چکیده

|Cell placement is an important phase of current VLSI circuit design styles as standard cell, gate array, and Field Programmable Gate Array (FPGA). Although nondeterministic algorithms such as Simulated Annealing (SA) have been successful in solving this problem, they are known to be slow. In this paper, we propose a neural network algorithm that produces solutions as good as SA in substantially less time. Our algorithm is based on Mean Field Annealing (MFA) technique, which has been successfully applied to various combinatorial optimization problems. We derive a MFA formulation for the cell placement problem that can easily be applied to all VLSI design styles. To demonstrate that the proposed algorithm is applicable to real world problems, we derive a detailed formulation for the FPGA design style, and generate the layouts of several benchmark circuits. The performance of the proposed cell placement algorithm is evaluated in comparison with commercial automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique. Performance evaluation is performed using ACM/SIGDA Design Automation benchmark circuits. Experimental results indicate that the proposed MFA algorithm produces comparable results with APR. However, MFA is almost 20 times faster than APR on the average.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network

Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...

متن کامل

Modeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm

Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...

متن کامل

Neural Network Based Protection of Software Defined Network Controller against Distributed Denial of Service Attacks

Software Defined Network (SDN) is a new architecture for network management and its main concept is centralizing network management in the network control level that has an overview of the network and determines the forwarding rules for switches and routers (the data level). Although this centralized control is the main advantage of SDN, it is also a single point of failure. If this main contro...

متن کامل

Cell Deformation Modeling Under External Force Using Artificial Neural Network

Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by mechanical forces. Therefore, development of mechanical properties of these materials is important. Neural network technique is a useful method which can be used to obtain cell deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in the needle injection pr...

متن کامل

Analysis and Diagnosis of Partial Discharge of Power Capacitors Using Extension Neural Network Algorithm and Synchronous Detection Based Chaos Theory

Power capacitors are important equipment of the power systems that are being operated in high voltage levels at high temperatures for long periods. As time goes on, their insulation fracture rate increases, and partial discharge is the most important cause of their fracture. Therefore, fast and accurate methods have great importance to accurately diagnosis the partial discharge. Conventional me...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007